GENETICS \& INHERITANCE

GENETICS = STUDY OF HEREDITY.

 CHROMOSOMES. DNA. GENES. ALLELES GENES PRODUCE CHARACTERISTICS.
INTRODUCTION

- The cells in the body of each parent are diploid (2n).
- Each specific characteristic of that person is thus made up from two possible plans.
- Only one plan for that characteristic comes through in the haploid sperm (or ovum) when that person has sex.
- This one (n) plan joins with the one (n) plan from the other parent's gamete for that characteristic.
- Our job is to predict probabilities of combinations of that characteristic in the children.

MONOhybrid CROSSES

- A CROSS refers to when two organisms have sex to reproduce.
- A HYBRID is the child from parents who have different genes.
- MONO tells us that we are only looking at ONE characteristic.
- Gregor Mendel is called The Father of Genetics, because of all we know, resulting from his research.

MENDEL'S RESEARCH

- He identified the ONE characteristic to study, namely how TALL the pea plant is.
- He worked out that the TALL gene for peas is dominant over the SHORT gene, which is recessive.
- The dominant gene (TALL) decides the letter, and is written as a capital (T).
- The recessive gene (SHORT) uses the same letter, but in its small form (t).
- Each characteristic always has two genes - one from each parent. Possible combinations: TT or Tt or tt

PREDICTIONS using PUNNET SQUARES (Page 37)

HeteroZygous Tall crosses with HomoZygous short. Parent PhenoType: Tall X Short Parent GenoType:

Tt
\mathbf{T} or \mathbf{t}

T t

Chances: $2 \times$ Tt out of 4 (50\%) Tall HeteroZygous. 2 X tt out of 4 (50\%) Short HomoZygous.

MENDEL’S LAWS

This slide merely explains the Text Book descriptions. 1. Law of Segregation: Each characteristic is controlled by two genes - one from Mommy, and one from Daddy.
2. Law of Independent Assortment: In meiosis, as the gamete's plan is randomly formed, each gene works by itself.
See details of his experiments for the pea plant on p. 33.

TT X tt \rightarrow Tt only. $\mathrm{Tt} \mathrm{X} \mathrm{Tt} \rightarrow \mathrm{TT}, \mathrm{Tt}, \mathrm{Tt}, \mathrm{tt}$.

TYPES OF DOMINANCE

- Complete Dominance $=$ where one gene is dominant, the other is recessive. (The Tallness of pea plants is an example; Brown eyes over green eyes; etc.)
- Incomplete Dominance = where both genes are equally dominant, and do not mind sharing the characteristic. (Black rabbit BB crosses White rabbit WW to produce Grey rabbits BW.)
- Co-Dominance = both genes are equally dominant, but insist on being shown as they are, and will not share. (Red cow RR crosses with White bull WW to make RW: parts of it Red, parts of it White.)

BLOOD TYPES

- This is Co-Dominance of Multiple Alleles, because there are three possible genes. These include combinations of $A\left(I^{A}\right), B\left(I^{B}\right)$, and $O(i)$.
- A and B are co-dominant, O is recessive.

| Blood Group A | $=\mathbf{I}^{\mathbf{A}} \mathbf{I}^{\mathbf{A}}$ or $\mathbf{I}^{\mathbf{A}} \mathbf{i}$ | father | \mathbf{A} | \mathbf{B} | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Blood Group B | $=\mathbf{I}^{\mathbf{B}} \mathbf{I}^{\mathbf{B}}$ or $\mathbf{I}^{\mathbf{B}} \mathbf{i}$ | \mathbf{A} | AA | AB | AO |
| Blood Group $\mathrm{AB}=\mathbf{I}^{\mathbf{A}} \mathbf{I}^{\mathbf{B}}$ | | | | | |
| Blood Group $\mathrm{O}=\mathbf{i} \mathbf{i}$ | | \mathbf{B} | BA | BB | BO |

allele lloodtype
$A+A=A$
$A+0=A$
$A+B=A B$
$B+B=B$
$B+0=B$
$0+0=0$

A man is homozygous for Blood Group A. His wife is heterozygous for Blood Group B. Find the genotype and phenotype probabilities for the F_{1} generation. Parent Phenotypes: Homoz. A X Heteroz. B

Parent Genotypes:

Gametes:
Sex:

Results:
2 out of $4=50 \% I^{A} I^{B}(A B)$.
2 out of $4=50 \% I^{A} i(A)$.

DiHYBRID CROSSES (Pages 38-39)

- This is when we are looking at TWO different characteristics at the same time. This means that each parent has four possible gametes for these combinations.
E.g. Tall (T) dominant over short (t) rose plant.

Red (R) flower dominant over yellow (r) flower.
TtRr parent could produce: TR Tr tR tr
The other parent also has four possibilities.
(See the Punnet Square on Page 39 to explain this.)
(See, also, the whole of page 38.)

Parents $\left(F_{1}\right)$: RrYy \times Rryy

	RY	Ry	$r Y$	ry
RY	RRYY	RRYY	Rryy	
Ry	RRYY			
ry				3 rryy
$r y$			rryy	rryy

9/16 yellow-round 3/16 yellow-wrinkled

3/16 green-round
1/16 green-wrinkled

DiHYBRID CROSS (Page 38)

CHANCES of GENDER

- Each human has 23 pairs of chromosomes.
- 22 pairs are called AutoSomes.
- 1 pair is the GonoSome. It is called the Sex Chromosome, because it determines your Gender. Females are XX. Males are XY.
- Female eggs can only have one X.
- 50\% of male sperms have X, 50\% have Y.
- There is always a 50% chance of either of them fertilizing the egg.
- So every conception has a 50% chance of being either boy or girl.

GENDER-LINKED DISEASES: ColourBlindness \& Haemophilia

- These diseases are recessive, attached to the X chromosome. (E.g. colour-blindness.)
- If a boy is born with this gene, he only has another Y - he has no other X which can be dominant. And so he will be born ColourBlind.
- If a girl is born with this gene, she has another X (which will probably be dominant). And so she herself will not be ColourBlind, but will be a carrier of ColourBlindness.

Sex-linked

$H=$ normal \& $h=$ hemophilia Cross: $\times \times^{h} \times \times^{h} Y$
$x \quad x^{n}$

Genotypic ratio: 1:1:1:1
$\left(X^{n} X=25 \% \quad X^{n} X^{n 7}=25 \% \quad X Y=25 \% \quad X^{n} Y=25 \%\right.$)
Phenotypic ratio: 1:1:1:1
Female carrier $=25 \%$ Female hemophilia $=25 \%$ Male normal $=25 \%$ Male hemophilia $=25 \%$

INTERPRETING PEDIGREE DIAGRAMS

- These look at how often that characteristic has occurred in the ancestors of a family.
- You will be asked to read it, and identify the genes for that characteristic in specific individuals of that family.
- In pencil (on the diagram), write down all the genes that are obvious.
- Then look at the children to see what the parents must have.

For further guidance, see page 43.

An Example

Generation IV: Female 4 wants to marry Male 5. Recessive gene (n) for albinism is shown in dark. They are worried about their possible children. Give them advice.
$\mathrm{N}=$ normal gene.
$\bigcirc=$ female $\mathrm{n}=$ albino gene.

